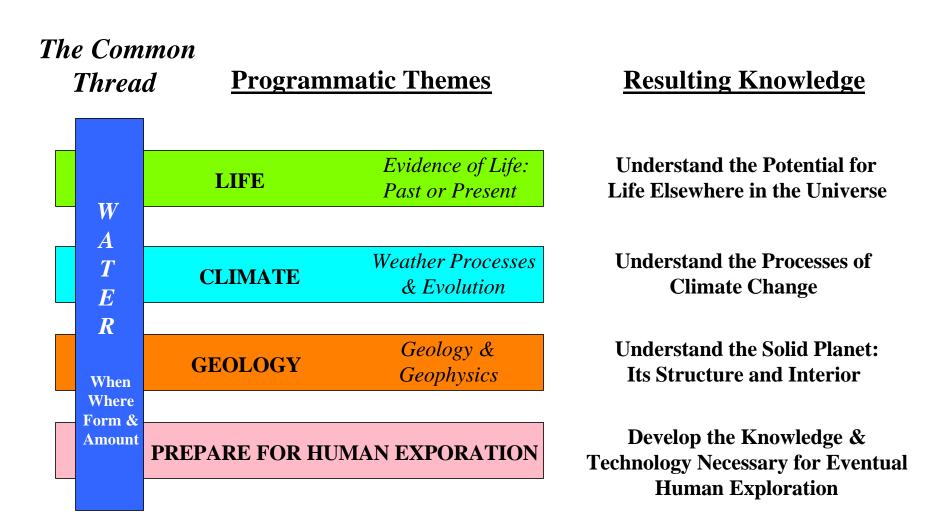


MRO Science

Mars Reconnaissance Orbiter

Science


Richard Zurek 15 June 2001

MARS EXPLORATION

JPL MRO Science Definition Team (SDT): Overview

- Chartered by J. Garvin, NASA Lead Program Scientist for Mars
- Co-Chaired by R. Zurek (JPL) & R. Greeley (ASU)
- **Built on work of NASA Advisory Groups**
 - NRC Space Studies Board Committee on Planetary & Lunar Exploration
 - NASA Mars Exploration Payload Advisory Group (MEPAG)
- Two Major Meetings Supported by Subgroup Activities
 - December 21, 2000 Videocon/Telecon
 - January 18-20, 2001 Meeting at ASU
- Subgroups
 - Atmospheres
 - Surface Mineralogy/Composition
 - Subsurface (Radar) Sounding
 - Imaging
 - Gravity & Other
- SDT Report submitted to J. Garvin (NASA)
 - Final Report (Feb. 9, 2001) submitted with cover letter Feb. 13, 2001
 - On NASA website:

http://spacescience.nasa.gov/research/future.htm

MRO SDT Science Priorities (1 of 3)

- SDT divided potential suite of high-priority science investigations (based on MEPAG report) into two groups:
 - Group I: Technically mature, likely to make major discoveries
 - Group II: Technical or scientific risk for '05, but high priority
- Group I Science Objectives
- Recover the Mars Climate Orbiter (MCO) atmosphere and climate science objectives by characterizing:
 - Seasonal cycles and diurnal variations of water, dust, and carbon dioxide to understand climate processes
 - ⇒ Fly MARCI WAC and redesigned PMIRR
 - Global atmospheric structure, transport, and surface changes to elucidate factors controlling the variable distributions of water and dust
 - ⇒ Fly MARCI WAC, PMIRR, AO investigations

MRO SDT Science Priorities (2 of 3)

- Search for sites showing evidence of aqueous and/or hydrothermal activity:
 - Localized areas showing past aqueous mineralization
 - Detailed geomorphology and stratigraphy of key locales to identify formation processes of geologic features suggesting the presence of liquid water
 - ⇒ AO investigations: VISNIR and HRI
- Explore in detail hundreds of targeted, globally distributed sites
 - Characterize in detail stratigraphy, geologic structure, composition of surface features to better understand the formation and evolution of complex terrain
 - Distinguish processes of eolian and non-eolian transport and surface modification
 - ⇒ AO investigations: Context Imager, HRI and VISNIR

MRO SDT Science Priorities (3 of 3)

- Group II Science Objectives
- Detect the presence of liquid water and determine the distribution of ground ice in the upper surface, particularly within the near-surface regolith
 - ⇒ Use radar to profile uppermost crust
- Provide atmospheric observations in addition to the MCO capabilities to further define atmospheric structure, circulation, and water vapor distribution
 - ⇒ Analyze data from Orbiter accelerometers during aerobraking or from radio occultations during mapping
- Characterize the gravity field in greater detail to understand better the geologic history and structure of the crust and lithosphere
 - ⇒ Analyze tracking data when orbiter is below 400 km
- Explore additional ways of identifying sites with high scientific potential for future Mars landed investigations

Status of MRO Instrument Selection

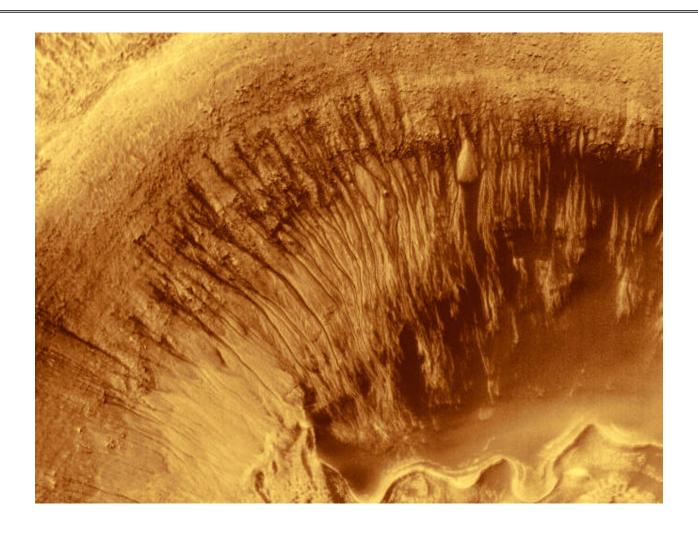
- NASA has provisionally selected the following instruments:
 - PMIRR-Mk II: Redesigned Mars Observer/Mars Climate Orbiter (PMIRR) Atmospheric Sounder (JPL)
 - MARCI+: Modified MCO Mars Color Imager (MSSS)
 - Wide Angle Camera for monitoring Martian weather
 - Medium Angle (facility) Camera for context imaging
 - SHARAD: Shallow subsurface RADAR for water detection (facility instrument provided by Italian Space Agency [ASI])
- NASA will select through an Announcement of Opportunity (to be released soon in draft form) the following:
 - VISNIR: Visible-near infrared imaging spectrometer
 - 25-50 m/pixel footprints from 200 400 km, 0.4 3.6 microns
 - HRI: High spatial resolution imager
 - Monochromatic, 30-60 cm/pixel, 3-6 km swath widths from orbit altitudes of 200 – 400 km
 - Science Teams (*contingent on final Mission design & funding)
 - Radar (U.S. Members), Gravity, Accelerometer, Radio Science

Status of MRO Instrument Selection

- With regard to AO specification of Imaging Spectrometer (VISNIR) capabilities:
 - There is an incomplete specification with regard to spectral resolution (stated to be 10 wavenumbers)
 - SDT recommended:
 - Resolution = 10 nm at L = 2.6 microns= 20 nm at L > 2.6 microns
 - SDT's intent was to ensure that the spectral resolution would be adequate to clearly detect aqueous minerals, if present on the surface of Mars. This suggested a spectral resolution in the 2-3.6 micron NIR region of

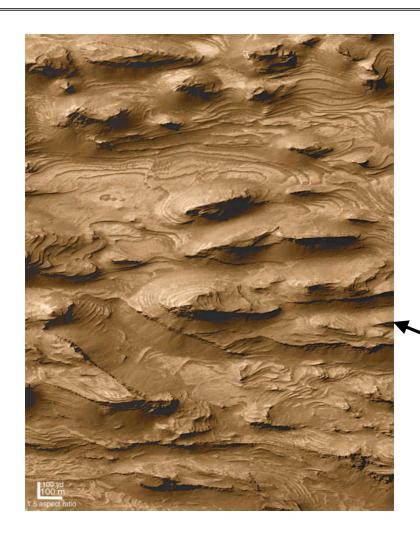
 $\lambda/\Delta\lambda \sim 250$

Science Attributes of MRO



- Mixed Observation Modes:
 - Global Monitoring for one Mars year (all seasons)
 - MARCI WA, PMIRR-MkII
 - Regional Surveys of Martian Surface and Subsurface
 - SHARAD, MARCI MA
 - Targeted high spatial resolution observations
 - High Resolution Imager, VISNIR Imaging Spectrometer
 - Simultaneous Operations
- Spatial resolutions unprecedented for Mars missions
 - Requires low altitude observing № 200 x 400 km orbit
 - Need global access P near-polar orbit, rotating periapsis
 - Need cross-track access ₱ spacecraft cross-track slews
- Enormous Data Volumes to be returned:
 - Tens of terabits of data returned during primary science mission; however,
 - Data return rates determine number of sites observed and fraction of Mars covered at the highest spatial resolution.

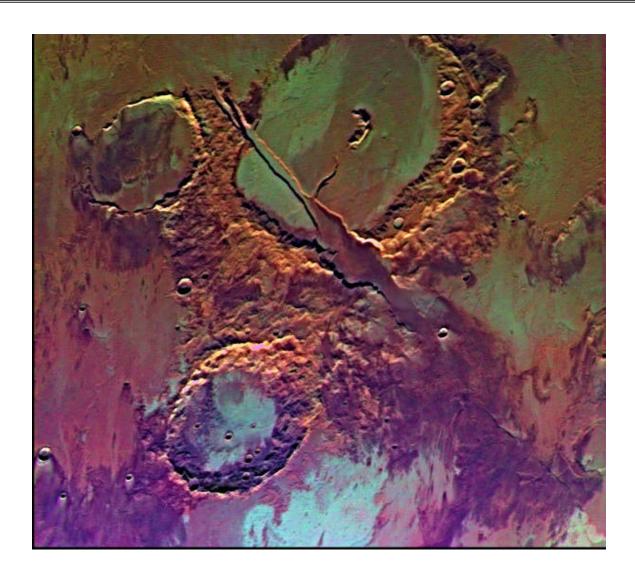
Martian "Gullies"



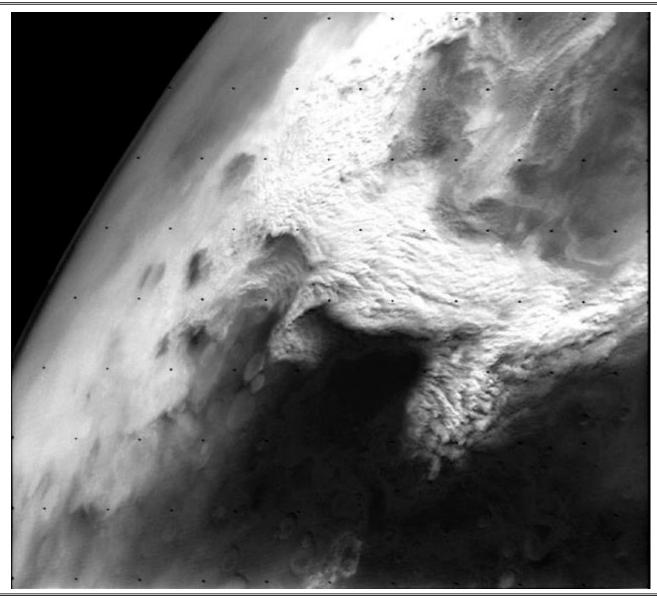
MGS MOC - MSSS

Western Candor Chasma

MGS MOC - MSSS


Mariner 9

Viking Color: Exploiting Spectral Data



Viking Catches a Great Dust Storm

